A Space View of Radar Archaeological Marks: First Applications of COSMO-SkyMed X-Band Data
نویسندگان
چکیده
With the development of Synthetic Aperture Radar (SAR) in terms of multi-band, multi-polarization and high-resolution data, space radar remote sensing for archaeology has become a potential field for research. Nevertheless, the archaeological detection capability of this technology has so far not been fully assessed. This paper is a pioneering effort to assess the potential of satellite SAR X-band data in the detection of archaeological marks. We focus on the results obtained from a collaborative contribution jointly carried out by archaeologists and remote sensing experts in order to test the use of COSMO-SkyMed data in different contexts and environmental conditions. The methodological approaches we adopted are based on two different feature-enhancement procedures: (i) multi-temporal OPEN ACCESS Remote Sens. 2015, 7 25 analysis performed to reduce noise and highlight archaeological marks; (ii) single-date analysis to assess the ability of the single SAR scene to detect archaeological features like with optical remote sensing. Results from multi-temporal data analysis, conducted using 40 scenes from COSMO-SkyMed X-band Stripmap data (27 February to 17 October 2013), enable us to detect unknown archaeological crop, soil, and shadow marks representing Luoyang city, dating from the Eastern-Han to Northern-Wei Dynasties. Single-date analyses were conducted using COSMO-SkyMed Spotlight scenes acquired for Sabratha (Libya) and Metapontum (southern Italy). These case studies were selected because they are characterized by diverse superficial conditions (desert and Mediterranean area) and archaeological marks (crop, soil and shadow). The results we obtained for both of them show that even a single SAR X-band acquisition is a feasible and effective approach for archaeological prospection. Overall, the methodological approach adopted demonstrated that both multi-temporal and single-date analysis are suitable for the enhancement of archaeological and palaeoenvironmental features.
منابع مشابه
Erratum: Chen, F. et al. A Space View of Radar Archaeological Marks: First Applications of COSMO-SkyMed X-Band Data. Remote Sens. 2015, 7(1), 24-50
Fulong Chen 1,2, Nicola Masini 3, Ruixia Yang 1,2, Pietro Milillo 4, Dexian Feng 5 and Rosa Lasaponara 1,6,* 1 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Haidian District, Beijing 100094, China; [email protected] (F.C.); [email protected] (R.Y.) 2 International Centre on Space Technologies for...
متن کاملX-band COSMO-SkyMed wind field retrieval, with application to coastal circulation modeling
In this paper, X-band COSMO-SkyMed© synthetic aperture radar (SAR) wind field retrieval is investigated, and the obtained data are used to force a coastal ocean circulation model. The SAR data set consists of 60 X-band Level 1B Multi-Look Ground Detected ScanSAR Huge Region COSMO-SkyMed© SAR data, gathered in the southern Tyrrhenian Sea during the summer and winter seasons of 2010. The SAR-base...
متن کاملAsi Data Exploitation of the Cosmo-skymed Mission
The data exploitation of the COSMO-SkyMed Mission allows the users to utilise innovative high resolution X-band data generated by the first European civilian radar constellation. The Data Exploitation of the Mission is lead separately for the institutional and commercial user. The former is supported by ASI (Agenzia Spaziale Italiana/Italian Space Agency); the latter by eGEOS [1]. ASI is conduc...
متن کاملPersistent Scatterer Interferometry Processing of COSMO-SkyMed StripMap HIMAGE Time Series to Depict Deformation of the Historic Centre of Rome, Italy
We processed X-band COSMO-SkyMed 3-m resolution StripMap HIMAGE time series (March 2011–June 2013) with the Stanford Method for Persistent Scatterers (StaMPS), to retrieve an updated picture of the condition and structural health of the historic centre of Rome, Italy, and neighbouring quarters. Taking advantage of an average target density of over 2800 PS/km2, we analysed the spatial distributi...
متن کاملInvestigating the Relationship between X-Band SAR Data from COSMO-SkyMed Satellite and NDVI for LAI Detection
Monitoring spatial and temporal variability of vegetation is important to manage land and water resources, with significant impact on the sustainability of modern agriculture. Cloud cover noticeably reduces the temporal resolution of retrievals based on optical data. COSMO-SkyMed (the new Italian Synthetic Aperture RADAR-SAR) opened new opportunities to develop agro-hydrological applications. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015